
baldrick
Release 0.3.dev0

Stuart Mumford, Thomas Robitaille, Pey Lian Lim, and Brigitta Sipőcz

Feb 04, 2022

CONTENTS

1 Getting started with building your bot 3

2 Available plugins and configuration 5

3 Setting up an app on Heroku 9

4 Registering and installing a GitHub app 11

5 Trying out components of the bot locally 13

6 API documentation 15

Python Module Index 25

Index 27

i

ii

baldrick, Release 0.3.dev0

Baldrick is a Python package that provides a framework to set up a GitHub bot with minimal code and effort. If you
run into any issues, have requests for improvement, or would like to contribute, our GitHub repository is here

CONTENTS 1

https://github.com/OpenAstronomy/baldrick

baldrick, Release 0.3.dev0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED WITH BUILDING YOUR BOT

We provide a simple template for the files needed to set up your bot at https://github.com/OpenAstronomy/baldrick/
tree/master/template. We take a look here at the minimal set of files required:

1.1 run.py

This is the main file that defines how you want your bot to behave. First, set up the bot using:

from baldrick import create_app
app = create_app('<your-bot-name>')

Then, optionally import any plugins you want to have available, including custom plugins if you have developed any
additional ones. The available plugins are:

import baldrick.plugins.circleci_artifacts
import baldrick.plugins.github_milestones
import baldrick.plugins.github_pull_requests
import baldrick.plugins.github_pushes
import baldrick.plugins.github_towncrier_changelog

And finally use the following to start up the bot:

import os
port = int(os.environ.get('PORT', 5000))
app.run(host='0.0.0.0', port=port, debug=False)

1.2 pyproject.toml

This file can be used to enable/disable any of the plugins that are available by default. See Available plugins and
configuration for more details.

3

https://github.com/OpenAstronomy/baldrick/tree/master/template
https://github.com/OpenAstronomy/baldrick/tree/master/template

baldrick, Release 0.3.dev0

1.3 Procfile

This should simply contain:

web: python -m run

and shouldn’t need to be modified further.

1.4 runtime.txt

This file specifies the Python runtime to use for your bot, for example:

python-3.6.5

Note that this should be Python 3.6 or later.

1.5 requirements.txt

This provides a list of packages required for your bot, and should include at the very least:

baldrick

1.6 Other files

Of course, don’t forget to include a README file and a LICENSE!

4 Chapter 1. Getting started with building your bot

CHAPTER

TWO

AVAILABLE PLUGINS AND CONFIGURATION

This page lists the available plugins. Note that to enable a plugin, your bot app should include an enabled = true
entry in the pyproject.toml file under the section for the specific plugin.

2.1 CircleCI Artifacts

The CircleCI service provides the option of storing build artifacts. The baldrick plugin will automatically post the link
to the artifacts as a status check in a GitHub pull request to avoid having to click through multiple pages to find the link
to the artifacts. To enable this plugin, include the following in your pyproject.toml file:

[tool.<your-bot-name>.circleci_artifacts]
enabled = true

You can then include additional sub-sections in the configuration for each set of artifacts, for example:

[tool.<your-bot-name>.circleci_artifacts.sphinx]
url = "html/index.html"
message = "This is the documentation"

The url item should be set to the file path of the artifacts, and the message is what will be shown in the status check.

Optionally, you can also specify a report_on_fail = true option for each artifact. By default the artifact status
will only be posted if the build reports a status of "success", if report_on_fail is set to true then the artifact
status will be posted (as long as it is successfully uploaded) irrespective of the build status.

2.2 Push handlers

We provide a plugin that will perform custom actions whenever a push is made to a repository, whether to a branch or
a tag.

To enable pull request handlers, include the following in your pyproject.toml file:

[tool.<your-bot-name>.pushes]
enabled = true

If you want to write your own custom handler, import push_handler from baldrick as follows:

from baldrick.plugins.github_pushes import push_handler

then use it to decorate a function of the form:

5

https://circleci.com/docs/2.0/artifacts/

baldrick, Release 0.3.dev0

@push_handler
def do_something_on_push(repo_handler, git_ref):

...

This function will be called with repo_handler, an instance of RepoHandler (click on the class names to find out the
available properties/methods), and git_ref which will be a string containing the ref for the push (e.g. refs/heads/
master). If the git_ref is a branch, repo_handler.branch will be correctly set, but note that the git_ref could
also point to a tag.

2.3 Pull request handlers

We provide a plugin that will perform checks on a pull request and report the results back to the pull request using
status checks. Which checks are done are themselves plugins and will be described in subsequent sections.

To enable pull request handlers, include the following in your pyproject.toml file:

[tool.<your-bot-name>.pull_requests]
enabled = true

In addition, you can use the following configuration items if you wish to change the default behavior:

• skip_labels = []: this can be set to a list of GitHub labels which, if present, will cause the checks to be
skipped. Note that labels are case-sensitive. The default is an empty list.

• skip_fails = false/true: if true, if the checks are skipped due to skip_labels, then a failed status check
will be posted to the pull request. If false, the checks will be silently skipped. The default is true.

2.3.1 GitHub milestone checker

This pull request handler plugin checks whether the milestone has been set. To enable this plugin, include the following
in your pyproject.toml file:

[tool.<your-bot-name>.milestones]
enabled = true

If you wish to customize the message shown in the results of the check, you can use the missing_message = "..."
and present_message = "..." configuration items.

If you wish to set a longer message to be shown on the checks tab, you can set missing_message_long and
present_message_long.

2.3.2 Towncrier changelog checker

Another built-in pull request handler plugin can be used to check that towncrier changelog changes in a pull request
are consistent with other details about the pull request (e.g. the pull request number). To enable this plugin, include
the following in your pyproject.toml file:

[tool.<your-bot-name>.towncrier_changelog]
enabled = true

This plugin has the following additional configuration items:

6 Chapter 2. Available plugins and configuration

https://github.com/hawkowl/towncrier

baldrick, Release 0.3.dev0

• verify_pr_number = true: whether to check that the name of the towncrier file added is consistent with the
pull request number.

• changelog_skip_label = "...": the name of a GitHub label which, if present, causes the towncrier
changelog checks to be skipped.

• help_url = "...": this can be set to the URL to use for the status check ‘Details’ link - you can set this to a
URL explaining how to use towncrier for example.

By default, the comment/statuses posted by the bot should be informative, but if you wish to change the wording of
these messages, you can override them with the following parameters:

• changelog_exists = "..." and changelog_missing = "...": the messages to use when a changelog
entry exists or is missing.

• number_correct = "..." and number_incorrect = "...": the messages to use when a changelog entry
has the correct or incorrect pull request number.

• type_correct = "..." and type_incorrect = "...": the messages to use when a changelog entry is not
of the right type.

Each of these configuration options has a _long equivalent, i.e. changelog_missing_long, which will be displayed
on the checks page to provide more details.

2.3.3 Custom plugin

If you want to write your own pull request checker, import pull_request_handler from baldrick as follows:

from baldrick.plugins.github_pull_requests import pull_request_handler

then use it to decorate a function of the form:

@pull_request_handler
def check_changelog_consistency(pr_handler, repo_handler):

...

This function will be called with pr_handler, an instance of PullRequestHandler, and repo_handler, an instance
of RepoHandler (click on the class names to find out the available properties/methods).

Your function should then return either None (no check results), or a dictionary where each key is the code name for
one of the checks (this will be used to match checks with previous checks, so make sure this is consistent across calls),
and the value should be a dictionary with at least two entries: conclusion, which can be set to success, failure,
neutral, cancelled, timed_out, or, action_required and title, which sets the description of the check on the
status line. Other keys in this dictionary will be passed to the baldrick.github.PullRequestHandler.set_check method.

2.3. Pull request handlers 7

baldrick, Release 0.3.dev0

8 Chapter 2. Available plugins and configuration

CHAPTER

THREE

SETTING UP AN APP ON HEROKU

Once you have an app ready to go using baldrick, you can deploy it to any server you want. Here we provide instructions
on setting it up on Heroku.

To start off, create a free account on Heroku if you don’t already have one. When you see the option to create a new
app, select it (ignore the “add to pipeline” option). Give a name to your app; You need to select a name that is not
already taken and it does not have to be the same as the bot’s name here.

You should now be on the “Deploy” section. Again, ignore the pipeline option. Select Github as “Deployment Method”.
Enter the relevant GitHub organization or account that the bot resides in (this should be automatically populated if you
have given Heroku access to your GitHub account) and type in the bot’s repository name (either this bot or a forked
version of it).

If you want to enable automatic deployment from a selected branch of the repository, click the “Enable Automatic
Deploys” button. This will pick up changes to the given branch and re-deploy the bot as needed. For most cases, you
don’t need the “wait for CI to pass before deploy” option as the bot is already tested here.

For the first time, you also need to manually deploy the bot by clicking “Deploy Branch”.

Once it is successfully deployed, and once you have followed the instructions to add the app to GitHub (see Registering
and installing a GitHub app) go to “Settings” tab of the app on Heroku and you can customize its behavior using
“Config Vars”. This is the only custom configuration on Heroku and can be set through the Heroku admin interface,
as mentioned. The main required environment variables (also see “Authentication” section below) are:

• GITHUB_APP_INTEGRATION_ID, which should be set to the integration ID provided by GitHub app (see “GitHub
settings” section below) under “General Settings”, specifically “About. . . ID”. This is a numerical integer value.

• GITHUB_APP_PRIVATE_KEY, which is generated by the GitHub app (see “GitHub settings” section below). This
private key should look like:

` -----BEGIN RSA PRIVATE KEY----- <some random characters> -----END RSA PRIVATE
KEY----- `

The whole key, including the BEGIN and END header and footer should be pasted into the field.

• BALDRICK_FILE_CACHE_TTL, This defaults to 60 seconds and controls the amount of time a file retrieved from
GitHub will be cached. This is important because otherwise reading the bot config from the repository will cause
many requests to GitHub. The value is in seconds.

9

baldrick, Release 0.3.dev0

10 Chapter 3. Setting up an app on Heroku

CHAPTER

FOUR

REGISTERING AND INSTALLING A GITHUB APP

4.1 Registering the app

Once you have set up the bot on a server (e.g. Setting up an app on Heroku), you will need to tell GitHub about the
app. To add the bot to your own organization or account, go to your GitHub organization or account URL (not the
repository) and then its settings. Then, click on “Developer settings” at the very bottom of the left navigation bar and
the “New GitHub App” button on top right.

Give your bot a “GitHub App name” as you want it to appear on GitHub activities. Under “Homepage URL”, enter the
GitHub repository URL where the bot code resides (either here or your fork, as appropriate).

For the User authorization callback URL, it should be in the format of http://<heroku-bot-name>.herokuapp.
com/installation_authorized.

For the Webhook URL, it should be in the format of http://<heroku-bot-name>.herokuapp.com/github.

You can ignore “Setup URL” and “Webhook secret”. It would be useful to provide a description of what your bot
intends to do but not required.

The permissions of the app should be read/write access to Commit statuses, Issues, and Pull requests. Once you have
checked these options, you will see extra “Subscribe to events” entries that you can check as well. For the events, it
should be sufficient to only check Status, Issue comment, Issues, Pull request, Pull request review, and Pull request
review comment.

It is up to you to choose whether you want to allow your GitHub app here to be installed only on your account or by
any user or organization.

Once you have clicked “Create GitHub App” button, you can go back to the app’s “General” settings and upload a logo,
which is basically a profile picture of your bot.

4.2 Install the bot

Go to https://github.com/apps/<github-app-name>. Then, click on the big green “Install” button. You can
choose to install the bot on all or select repositories under your account or organization. It is recommended to only
install it for select repositories by start typing a repository name and let auto-completion do the hard work for you
(repeat this once per repository). Once you are done, click “Install”.

After a successfull installation, you will be taken to a https://github.com/settings/installations/
<installation-number> page. This page is also accessible from your account or organization settings in “Applica-
tions”, specifically under “Installed GitHub Apps”. You can change the installation settings by clicking the “Configure”
button next to the listed app, if desired.

11

baldrick, Release 0.3.dev0

12 Chapter 4. Registering and installing a GitHub app

CHAPTER

FIVE

TRYING OUT COMPONENTS OF THE BOT LOCALLY

5.1 GitHub API

The different components of the bot interact with GitHub via a set of helper classes that live in baldrick.github.
These classes are RepoHandler, IssueHandler, and PullRequestHandler. It is possible to try these out locally,
at least for the parts of the GitHub API that do not require authentication. For example, the following should work:

>>> from baldrick.github import RepoHandler, IssueHandler, PullRequestHandler
>>> repo = RepoHandler('astropy/astropy')
>>> repo.get_issues('open', 'Close?')
[6025, 5193, 4842, 4549, 4058, 3951, 3845, 2603, 2232, 1920, 1024, 435, 383, 282]
>>> issue = IssueHandler('astropy/astropy', 6597)
>>> issue.labels
['Bug', 'coordinates']
>>> pr = PullRequestHandler('astropy/astropy', 6606)
>>> pr.labels
['Enhancement', 'Refactoring', 'testing', 'Work in progress']
>>> pr.last_commit_date
1506374526.0

However since these are being run un-authenticated, you may quickly run into the GitHub public API limits. If you are
interested in authenticating locally, see the Authenticating locally section below.

5.2 Authenticating locally

In some cases, you may want to test the bot locally as if it was running on Heroku. In order to do this you will need to
make sure you have all the environment variables described above set correctly.

The main ones to get right as far as authentication is concerned are as follows (see Setting up an app on Heroku for
further details):

• GITHUB_APP_INTEGRATION_ID

• GITHUB_APP_PRIVATE_KEY

The last thing you will need is an Installation ID - a GitHub app can be linked to different GitHub accounts, and for
each account or organization, it has a unique ID. You can find out this ID by going to Your installations and then
clicking on the settings box next to the account where you have a test repository you want to interact with. The URL
of the page you go to will contain the Installation ID and look like:

https://github.com/settings/installations/36238

13

https://github.com/settings/installations/36238

baldrick, Release 0.3.dev0

In this case, 36238 is the installation ID. Provided you set the environment variables correctly, you should then be able
to do e.g.:

>>> from baldrick.github import IssueHandler
>>> issue = IssueHandler('astrofrog/test-bot', 5, installation=36238)
>>> issue.submit_comment('I am alive!')

Note: Authentication will not work properly if you have a .netrc file in your home directory, so you will need to
rename this file temporarily.

14 Chapter 5. Trying out components of the bot locally

CHAPTER

SIX

API DOCUMENTATION

6.1 baldrick.github Package

6.1.1 Classes

GitHubHandler(repo[, installation]) A base class for things that represent things the github
app can operate on.

IssueHandler(repo, number[, installation])

PullRequestHandler(repo, number[, installation])

RepoHandler(repo[, branch, installation])

GitHubHandler

class baldrick.github.GitHubHandler(repo, installation=None)
Bases: object

A base class for things that represent things the github app can operate on.

Attributes Summary

default_branch

repo_info The return of GET /repos/{org}/{repo}

Methods Summary

get_config_value(cfg_key[, cfg_default,
branch])

Convenience method to extract user configuration
values.

get_file_contents(path_to_file[, branch])

get_repo_config([branch, path_to_file]) Load configuration from the repository.
continues on next page

15

baldrick, Release 0.3.dev0

Table 3 – continued from previous page
invalidate_cache()

list_checks(commit_hash[, only_ours]) List check messages on a commit on GitHub.
list_statuses(commit_hash) List status messages on a commit on GitHub.
set_status(state, description, context, ...) Set status message on a commit on GitHub.

Attributes Documentation

default_branch

repo_info
The return of GET /repos/{org}/{repo}

Methods Documentation

get_config_value(cfg_key, cfg_default=None, branch=None)
Convenience method to extract user configuration values.

Values are extracted from the repository configuration, and if not defined, they are extracted from the global
app configuration. If this does not exist either, the value is set to the cfg_default argument.

get_file_contents(path_to_file, branch=None)

get_repo_config(branch=None, path_to_file='pyproject.toml')
Load configuration from the repository.

Parameters

• branch (str) – The branch to read the config file from. (Will default to the default branch)

• path_to_file (str) – Path to the pyproject.toml file in the repository. Will default to
the root of the repository.

Returns cfg – Configuration parameters.

Return type baldrick.config.Config

invalidate_cache()

list_checks(commit_hash, only_ours=True)
List check messages on a commit on GitHub.

Parameters

• commit_hash (str) – The commit has to get the statuses for

• only_ours (bool, optional) – Only return status that this app has posted.

list_statuses(commit_hash)
List status messages on a commit on GitHub.

Parameters commit_hash (str) – The commit has to get the statuses for

set_status(state, description, context, commit_hash, target_url=None)
Set status message on a commit on GitHub.

Parameters

• state ({ 'pending' | 'success' | 'error' | 'failure' }) – The state to set for the
pull request.

16 Chapter 6. API documentation

baldrick, Release 0.3.dev0

• description (str) – The message that appears in the status line.

• context (str) – A string used to identify the status line.

• commit_hash (str) – The commit hash to set the status on.

• target_url (str or None) – Link to bot comment that is relevant to this status, if given.

IssueHandler

class baldrick.github.IssueHandler(repo, number, installation=None)
Bases: baldrick.github.github_api.GitHubHandler

Attributes Summary

is_closed Is the issue closed?
json

labels Get labels for this issue

Methods Summary

close()

find_comments(login[, filter_keep]) Find comments by a given user.
get_label_added_date(label) Get last added date for a label.
last_comment_date(login[, filter_keep]) Find the last date on which a comment was made.
set_labels(labels) Set label(s) to issue
submit_comment(body[, comment_id, return_url]) Submit a comment to the pull request

Attributes Documentation

is_closed
Is the issue closed?

json

labels
Get labels for this issue

Methods Documentation

close()

find_comments(login, filter_keep=None)
Find comments by a given user.

get_label_added_date(label)
Get last added date for a label. If label is re-added, the last time it was added is the one.

Parameters label (str) – Issue label.

6.1. baldrick.github Package 17

baldrick, Release 0.3.dev0

Returns t – Unix timestamp, if available.

Return type float or None

last_comment_date(login, filter_keep=None)
Find the last date on which a comment was made.

set_labels(labels)
Set label(s) to issue

submit_comment(body, comment_id=None, return_url=False)
Submit a comment to the pull request

Parameters

• body (str) – The comment

• comment_id (int) – If specified, the comment with this ID will be replaced

• return_url (bool) – Return URL of posted comment.

Returns url – URL of the posted comment, if requested.

Return type str or None

PullRequestHandler

class baldrick.github.PullRequestHandler(repo, number, installation=None)
Bases: baldrick.github.github_api.IssueHandler

Attributes Summary

base_branch

base_sha

draft

head_branch

head_repo_name

head_sha

json

last_commit_date

milestone

user

18 Chapter 6. API documentation

baldrick, Release 0.3.dev0

Methods Summary

get_file_contents(path_to_file[, branch]) Get the contents of a file.
get_modified_files() Get all the filenames of the files modified by this PR.
get_repo_config([branch, path_to_file]) Load user configuration for bot.
has_modified(filelist) Check if PR has modified any of the given list of file-

name(s).
list_checks([commit_hash, only_ours]) List checks on a commit on GitHub.
list_statuses([commit_hash]) List status messages on a commit on GitHub.
set_check(external_id, title[, name, ...]) Set check status.
set_status(state, description, context[, ...]) Set status message on a commit on GitHub.
submit_review(decision, body) Submit a review comment to the pull request

Attributes Documentation

base_branch

base_sha

draft

head_branch

head_repo_name

head_sha

json

last_commit_date

milestone

user

Methods Documentation

get_file_contents(path_to_file, branch=None)
Get the contents of a file.

This will get the file from the head branch of the PR by default.

get_modified_files()
Get all the filenames of the files modified by this PR.

get_repo_config(branch=None, path_to_file='pyproject.toml')
Load user configuration for bot.

Parameters

• branch (str) – The branch to read the config file from. (Will default to the base branch of
the PR i.e. the one the PR is opened against.)

• path_to_file (str) – Path to the pyproject.toml file in the repository. Will default to
the root of the repository.

Returns cfg – Configuration parameters.

Return type dict

6.1. baldrick.github Package 19

baldrick, Release 0.3.dev0

has_modified(filelist)
Check if PR has modified any of the given list of filename(s).

list_checks(commit_hash='head', only_ours=True)
List checks on a commit on GitHub.

Parameters

• commit_hash (str, optional) – The commit hash to set the check on. Defaults to “head”
can also be “base”.

• only_ours (bool, optional) – Only return checks which were posted by this GitHub app.

list_statuses(commit_hash='head')
List status messages on a commit on GitHub.

Parameters commit_hash (str, optional) – The commit hash to set the status on. Defaults
to “head” can also be “base”.

set_check(external_id, title, name=None, summary=None, text=None, commit_hash='head',
details_url=None, status=None, conclusion='neutral', check_id=None, completed_at=None)

Set check status.

Note: This method does not provide API access to full check run capability (e.g., annotation and image).
Add them as needed.

Parameters

• external_id (str) – The internal reference for this check, used to reference the check
later, to update it.

• title (str) – The short description of the check to be put in the status line of the PR.

• name (str, optional) – Name of the check, defaults to {bot_username}:{external_id}
if not specified, is displayed first in the status line.

• summary (str) – Summary of the check run, displays at the top of the checks page.

• text (str, optional) – The full body of the check, displayed on the checks page.

• commit_hash ({ 'head' | 'base' }, optional) – The SHA of the commit.

• details_url (str or None, optional) – The URL of the integrator’s site that has the full
details of the check.

• status ({ 'queued' | 'in_progress' | 'completed' }) – The current status.

• conclusion ({ 'success' | 'failure' | 'neutral' | 'cancelled' | 'timed_out'
| 'action_required' }) – The final conclusion of the check. Required if you provide a
status of 'completed'. When the conclusion is 'action_required', additional details
should be provided on the site specified by 'details_url'. Note: Providing conclusion
will automatically set the status parameter to 'completed'.

• check_id (str, optional) – If specified this check will be updated rather than a new check
being made.

• completed_at (bool or datetime.datetime) – The time the check completed. If None this
will not be set, if True it will be set to the time this method is called, otherwise it should
be a datetime.datetime.

20 Chapter 6. API documentation

baldrick, Release 0.3.dev0

set_status(state, description, context, commit_hash='head', target_url=None)
Set status message on a commit on GitHub.

Parameters

• state ({ 'pending' | 'success' | 'error' | 'failure' }) – The state to set for the
pull request.

• description (str) – The message that appears in the status line.

• context (str) – A string used to identify the status line.

• commit_hash ({ 'head' | 'base' }) – The commit hash to set the status on. Defaults to
“head” can also be “base”.

• target_url (str or None) – Link to bot comment that is relevant to this status, if given.

submit_review(decision, body)
Submit a review comment to the pull request

Parameters

• decision ({ 'approve' | 'request_changes' | 'comment' }) – The decision as to
whether to aprove or reject the changes so far.

• body (str) – The body of the review comment

RepoHandler

class baldrick.github.RepoHandler(repo, branch=None, installation=None)
Bases: baldrick.github.github_api.GitHubHandler

Methods Summary

get_all_labels() Get all label options for this repo
get_file_contents(path_to_file[, branch])

get_issues(state, labels[, exclude_pr]) Get a list of issues.
open_pull_requests()

Methods Documentation

get_all_labels()
Get all label options for this repo

get_file_contents(path_to_file, branch=None)

get_issues(state, labels, exclude_pr=True)
Get a list of issues.

Parameters

• state ({'open', ...}) – Status of the issues.

• labels (str) – List of comma-separated labels; e.g., Closed?.

• exclude_pr (bool) – Exclude pull requests from result.

6.1. baldrick.github Package 21

baldrick, Release 0.3.dev0

Returns issue_list – A list of matching issue numbers.

Return type list

open_pull_requests()

6.2 baldrick.github.github_auth Module

6.2.1 Functions

get_app_name() Return the login name of the authenticated app.
get_installation_token(installation) Get access token for installation
get_json_web_token() Prepares the JSON Web Token (JWT) based on the pri-

vate key.
github_request_headers(installation)

netrc_exists()

repo_to_installation_id(repository) Return the installation ID for a repository.
repo_to_installation_id_mapping() Returns a dictionary mapping full repository name to in-

stallation id.

get_app_name

baldrick.github.github_auth.get_app_name()
Return the login name of the authenticated app.

get_installation_token

baldrick.github.github_auth.get_installation_token(installation)
Get access token for installation

get_json_web_token

baldrick.github.github_auth.get_json_web_token()
Prepares the JSON Web Token (JWT) based on the private key.

github_request_headers

baldrick.github.github_auth.github_request_headers(installation)

22 Chapter 6. API documentation

baldrick, Release 0.3.dev0

netrc_exists

baldrick.github.github_auth.netrc_exists()

repo_to_installation_id

baldrick.github.github_auth.repo_to_installation_id(repository)
Return the installation ID for a repository.

repo_to_installation_id_mapping

baldrick.github.github_auth.repo_to_installation_id_mapping()
Returns a dictionary mapping full repository name to installation id.

6.2. baldrick.github.github_auth Module 23

baldrick, Release 0.3.dev0

24 Chapter 6. API documentation

PYTHON MODULE INDEX

b
baldrick.github, 15
baldrick.github.github_auth, 22

25

baldrick, Release 0.3.dev0

26 Python Module Index

INDEX

B
baldrick.github

module, 15
baldrick.github.github_auth
module, 22

base_branch (baldrick.github.PullRequestHandler at-
tribute), 19

base_sha (baldrick.github.PullRequestHandler at-
tribute), 19

C
close() (baldrick.github.IssueHandler method), 17

D
default_branch (baldrick.github.GitHubHandler at-

tribute), 16
draft (baldrick.github.PullRequestHandler attribute),

19

F
find_comments() (baldrick.github.IssueHandler

method), 17

G
get_all_labels() (baldrick.github.RepoHandler

method), 21
get_app_name() (in module

baldrick.github.github_auth), 22
get_config_value() (baldrick.github.GitHubHandler

method), 16
get_file_contents()

(baldrick.github.GitHubHandler method),
16

get_file_contents()
(baldrick.github.PullRequestHandler method),
19

get_file_contents() (baldrick.github.RepoHandler
method), 21

get_installation_token() (in module
baldrick.github.github_auth), 22

get_issues() (baldrick.github.RepoHandler method),
21

get_json_web_token() (in module
baldrick.github.github_auth), 22

get_label_added_date()
(baldrick.github.IssueHandler method), 17

get_modified_files()
(baldrick.github.PullRequestHandler method),
19

get_repo_config() (baldrick.github.GitHubHandler
method), 16

get_repo_config() (baldrick.github.PullRequestHandler
method), 19

github_request_headers() (in module
baldrick.github.github_auth), 22

GitHubHandler (class in baldrick.github), 15

H
has_modified() (baldrick.github.PullRequestHandler

method), 19
head_branch (baldrick.github.PullRequestHandler at-

tribute), 19
head_repo_name (baldrick.github.PullRequestHandler

attribute), 19
head_sha (baldrick.github.PullRequestHandler at-

tribute), 19

I
invalidate_cache() (baldrick.github.GitHubHandler

method), 16
is_closed (baldrick.github.IssueHandler attribute), 17
IssueHandler (class in baldrick.github), 17

J
json (baldrick.github.IssueHandler attribute), 17
json (baldrick.github.PullRequestHandler attribute), 19

L
labels (baldrick.github.IssueHandler attribute), 17
last_comment_date() (baldrick.github.IssueHandler

method), 18
last_commit_date (baldrick.github.PullRequestHandler

attribute), 19

27

baldrick, Release 0.3.dev0

list_checks() (baldrick.github.GitHubHandler
method), 16

list_checks() (baldrick.github.PullRequestHandler
method), 20

list_statuses() (baldrick.github.GitHubHandler
method), 16

list_statuses() (baldrick.github.PullRequestHandler
method), 20

M
milestone (baldrick.github.PullRequestHandler at-

tribute), 19
module

baldrick.github, 15
baldrick.github.github_auth, 22

N
netrc_exists() (in module

baldrick.github.github_auth), 23

O
open_pull_requests() (baldrick.github.RepoHandler

method), 22

P
PullRequestHandler (class in baldrick.github), 18

R
repo_info (baldrick.github.GitHubHandler attribute),

16
repo_to_installation_id() (in module

baldrick.github.github_auth), 23
repo_to_installation_id_mapping() (in module

baldrick.github.github_auth), 23
RepoHandler (class in baldrick.github), 21

S
set_check() (baldrick.github.PullRequestHandler

method), 20
set_labels() (baldrick.github.IssueHandler method),

18
set_status() (baldrick.github.GitHubHandler

method), 16
set_status() (baldrick.github.PullRequestHandler

method), 20
submit_comment() (baldrick.github.IssueHandler

method), 18
submit_review() (baldrick.github.PullRequestHandler

method), 21

U
user (baldrick.github.PullRequestHandler attribute), 19

28 Index

	Getting started with building your bot
	run.py
	pyproject.toml
	Procfile
	runtime.txt
	requirements.txt
	Other files

	Available plugins and configuration
	CircleCI Artifacts
	Push handlers
	Pull request handlers
	GitHub milestone checker
	Towncrier changelog checker
	Custom plugin

	Setting up an app on Heroku
	Registering and installing a GitHub app
	Registering the app
	Install the bot

	Trying out components of the bot locally
	GitHub API
	Authenticating locally

	API documentation
	baldrick.github Package
	Classes
	GitHubHandler
	IssueHandler
	PullRequestHandler
	RepoHandler

	baldrick.github.github_auth Module
	Functions
	get_app_name
	get_installation_token
	get_json_web_token
	github_request_headers
	netrc_exists
	repo_to_installation_id
	repo_to_installation_id_mapping

	Python Module Index
	Index

